Course Module for Chemistry (Course Course-5) Semester-III

Session: 2018-19

Course Tittle: Physical Chemistry-II Core Course: CC5 (Theo)

Transport processes

F F		
• Fick's law, Flux & force	1Lecture	
• Phenomenological coefficient&their inter-relationship	1Lecture	
• Different transport phenomena &their examples	2Lectures	
Liquid		
 Viscosity and dependence of it on other parameter. 	4 Lectures	
• Poiseuille's equation &its determination	4 Lectures	
Conductance		
Basic concept of conductance, specificconductance, ionconductance	2Lectures	
Variation specificconductance & equivalent conductance with concentrat	ion 1 Lecture	
• Activity and activity coefficient, mean ionic activity, activity coefficient, ion atmosphere,		
electrophoretic and relaxation effect.	5 Lectures	
Onsagar equation, Debye-Huckel theory and the limiting law, solubil	lity of sparingly	
soluble salts, ionic strength of medium.	5 Lectures	
• Specific and molar conductance, variation with temperature and	l concentration,	
Kohrausch's law, transport numbers.	8 Lectures	
Asymmetric effect, electrophoretic effect	1Lecture	
• Conductometric titration.	2 Lectures	
Conductance & solubility product	1 Lecture	
 Ostwald dilution law & its limitation 	1 Lecture	
Transport number		

•	Transport number and its determination	2 Lectures
•	Principle of Hittrof's rule & moving boundary method	1 Lecture
•	Debye-Falkenhagen effect & Walden's rule	2Lectures

Application of thermodynamics-1

Chemical potential & partial molar properties	2Lectures	
• Relation between chemical potential with G, H,U & S	2Lectures	
 Concept of fugacity &fugacity coefficient 	1Lecture	
Gibbs Duhem equation &binary system	1Lecture	
 Calculation of ΔG,ΔH,ΔS &ΔU for binary solutions 	2Lectures	
Chemical equilibrium		
• Condition of spontaneity of a reaction and equilibrium.	3 Lectures	
• Concept & definition of Kp, Kc&Kx for different reactions	1Lectures	
 van'tHoffs reaction isobar &isochore 	2Lectures	
• Le Chatelier principle& its quantitative expression	2 Lectures	
Nernst distribution law		
• Nernst distribution law&its statement, explanation limitation	1Lecture	
• Application for KI+I ₂ =KI ₃ reaction	1Lecture	
 Application for dimerization reaction 	1Lecture	
Chemical potential and other properties in pure & mixture		
• Chemical potential for ideal gas & in mixture	2Lectures	
 Concept of standard state & thermodynamic functions 	2Lectures	
 Concept of ideal solution and its deviation 	1Lecture	
• Ideal solution and Raoult,s law and Henry's law.	2Lectures	
Foundation of Quantum mechanics		
• Electromagnetic radiation and its properties	2Lectures	
Wave-particle duality	2Lectures	
• Photoelectric effect, Compton effect & mathematical equations	3Lectures	
 Concept of electron as wave 	1Lecture	
• de Broglie hypothesis & uncertainty relation	2Lectures	
Wave Functions		
• Time-independentSchrödinger equation& wave function	1Lecture	
 Condition of acceptability of wave functions & physical interpretat 	tion 2 Lectures	
Concept of operators		
 Elementary concept of operators 	1Lecture	

•	Eigen function & eigenvalues, their expression & calculations	2Lectures	
•	Commutation & uncertainty relation between two operators	2Lectures	
•	Hermitian operators & postulates of quantum mechanics	2Lectures	
Partic	ele in a box		
•	Construction of Schrödinger equation for particle in a 1D box	1Lecture	
	& its solution.		
•	Normalization, orthogonality, probability distribution calculations of	2Lectures	
	wave function regardingparticle in a 1D box		
•	Calculations of expectation value of x, x^2 , $P_x & P_x^2$	3Lectures	
•	Degeneracy in energy levels	1Lecture	
Simpl	e Harmonic Oscillator		
•	Concept simple harmonic oscillator model	1Lecture	
•	Construction of Schrödinger equation for simple	1Lecture	
	harmonic oscillator & energy expression		
•	Expression of wave functionsforsimple	1Lecture	
	harmonic oscillator for n=1 & n=2		
	Course Tittle: Physical Chemistry-II		
Core Course: CC5 (Practical)			
•	• Determination of viscosity of unknown liquid (glycerol, sugar) w.r.t water		
•	• Determination of partition coefficient of I ₂ in water & CCl ₄		
•	Determination of equilibrium constant for KI+I ₂ =KI ₃ reaction by partition	method	
•	Conductometric titration of acid with base		
•	Study of saponification reaction conducmetrically		
•	Verification of Ostwald's Dilution law.		
	Course Code: Generic Elective-3 + CC (Gen) Theory		
Course Tittle: Chemical energetics, equilibria, organic chemistry-II			
Chem	ical energetics		
•	Extensive property & intensive properties	1Lectures	
•	System and surroundings.	2 Lectures	

• Derivatives, exact differentials, state and path functions.

4 Lectures

	eversible processes and their mathematical fferent processes like isothermal and adiabatic en	8 Lectures tc.
• Zeroth law, first, s	second law of thermodynamics and their	6 Lectures
mathematical implication	s.	
• Different function	s like H, U, G and their relations	4 Lectures
Chemical Equilibrium		
 Condition of spon 	taneity of a reaction and equilibrium.	3 Lectures
• Concept & definit	ion of Kp, Kc&Kx for different reactions	1Lectures
• van'tHoffs reaction	n isobar &isochore	2Lectures
• Le Chatelier princ	iple & its quantitative expression	2 Lectures
Ionic Equilibria		
• Oswald's dilution	law, pH, Kw, buffer solution.	6 Lectures
Hydrolysis of salts	s, indicator.	4 Lectures
Solubility & solub	pility product of a sparingly salt	2Lectures
Aromatic hydrocarbon		
• Synthesis, reaction	ns with mechanism	8Lectures
Organometallic compou	nds	
• Grignard reagents	& their preparations	1 Lecture
• Synthesis of differ	rent compounds from Grignard reagents	2 Lectures
Reformatsky react	tion & other reaction	1Lecture
Aryl halide		
• Synthesis of differ	rent types of Aryl halides	2Lectures
• Some important n	ame reactions of these compounds	2Lectures
Nucleophilic aron	natic substitution reactions	1Lecture
Alcohol, phenols, ethers		
• Synthesis of prima	ary, secondary & tertiary alcohols	2Lectures
usingGrignard rea	gents fromdifferent substrates	
• Different types of	reaction of alcohols	2Lectures

• Preparation of diols using oxidation method (with OsO ₄)	1Lecture		
Pinacol-pinacolone rearrangement reactions	1Lecture		
Phenols			
 Synthesis of phenols 	1Lecture		
 Some important reactions using phenols 	5Lecture		
Ethers			
• Williamson's ether synthesis	1Lecture		
 Reactions with ethers 	2Lecture		
• Cleavage of ethers using HI	1Lecture		
Carbonyl compounds			
• Discussion on aromatic & aliphatic aldehydes and ketones	2Lectures		
• Their synthesis from Grignard reagents & also from other reagents	4Lectures		
 Properties of aldehydes & ketones 	2Lectures		
 Reactions with HCN, ROH, NaHSO₄,NH₂-G 	4Lectures		

Course Code: Generic Elective-3 + CC (Gen) Practical Course Tittle: Chemical energetics, equilibria, organic chemistry-II

- Measurement of pH of different solutions like fruit juices, shampoo, soap using pH meter.
- Determination of pH of unknown buffer solution by colour matching method.
- Study of solubility of benzoic acid in water.
- Identification of different pure organic compounds (solid & liquid).